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Statistical Properties of Share Volume Traded in Financial Markets

Parameswaran Gopikrishnan1, Vasiliki Plerou1,2, Xavier Gabaix3 and H. Eugene Stanley1

1 Center for Polymer Studies and Department of Physics,

Boston University Boston, Massachusetts 02215.
2 Department of Physics, Boston College, Chestnut Hill, Massachusetts 02164.

3 Department of Economics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142.

(January 20, 2004)

We quantitatively investigate the ideas behind the often-expressed adage ‘it takes volume to move
stock prices’, and study the statistical properties of the number of shares traded Q∆t for a given
stock in a fixed time interval ∆t. We analyze transaction data for the largest 1000 stocks for the
two-year period 1994-95, using a database that records every transaction for all securities in three
major US stock markets. We find that the distribution P (Q∆t) displays a power-law decay, and
that the time correlations in Q∆t display long-range persistence. Further, we investigate the relation
between Q∆t and the number of transactions N∆t in a time interval ∆t, and find that the long-range
correlations in Q∆t are largely due to those of N∆t. Our results are consistent with the interpretation
that the large equal-time correlation previously found between Q∆t and the absolute value of price
change |G∆t| (related to volatility) are largely due to N∆t.

PACS numbers: 05.45.Tp, 89.90.+n, 05.40.-a, 05.40.Fb

The distinctive statistical properties of financial time
series are increasingly attracting the interest of physi-
cists [1]. In particular, several empirical studies have de-
termined the scale-invariant behavior of both the distri-
bution of price changes [2] and the long-range correlations
in the absolute values of price changes [3]. It is a common
saying that ‘it takes volume to move stock prices’. This
adage is exemplified by the market crash of 19 October
1987, when the Dow Jones Industrial Average dropped
22.6% accompanied by an estimated 6 × 108 shares that
changed hands on the New York Stock Exchange alone.
Indeed, an important quantity that characterizes the dy-
namics of price movements is the number of shares Q∆t

traded (share volume) in a time interval ∆t. Accordingly,
in this paper we quantify the statistical properties of Q∆t

and the relation between Q∆t and the number of trades
N∆t in ∆t. To this end, we select 1000 largest stocks
from a database [4] recording all transactions for all US-
stocks, and analyze transaction data for each stock for
the 2-year period 1994–95.

First, we consider the time series of Q∆t for one
stock, which shows large fluctuations that are strikingly
non-Gaussian [Fig. 1a]. Figure 1b shows, for each of
four actively-traded stocks, the probability distributions
P (Q∆t) which are consistent with a power law decay,

P (Q∆t) ∼
1

(Q∆t)1+λ
. (1)

When we extend this analysis to the each of the 1000
stocks [Fig. 1c,d], we obtain an average value for the ex-
ponent λ = 1.7 ± 0.1, within the Lévy stable domain
0 < λ < 2.

We next analyze correlations in Q∆t. We consider the
family of correlation functions 〈[Q∆t(t)]

a[Q∆t(t + τ)]a〉,
where the parameter a (< λ/2) is required to ensure that

the correlation function is well defined. Instead of an-
alyzing the correlation function directly, we apply de-
trended fluctuation analysis [5], which has been success-
fully used to study long-range correlations in a wide range
of complex systems [6]. We plot the detrended fluctua-
tion function F (τ) as a function of the time scale τ . Ab-
sence of long-range correlations would imply F (τ) ∼ τ0.5,
whereas F (τ) ∼ τδ with 0.5 < δ ≤ 1 implies power-law
decay of the correlation function,

〈[Q∆t(t)]
a[Q∆t(t + τ)]a〉 ∼ τ−κ ; [κ = 2 − 2 δ] . (2)

For the parameter a = 0.5, we obtain the average value
δ = 0.83 ± 0.02 for the 1000 stocks [Fig. 2a,b]; so from
Eq. (2), κ = 0.34 ± 0.04 [7].

To investigate the reasons for the observed power-law
tails of P (Q∆t) and the long-range correlations in Q∆t,
we first note that

Q∆t ≡
N∆t
∑

i=1

qi , (3)

is the sum of the number of shares qi traded for all
i = 1, . . . , N∆t transactions in ∆t. Hence, we next ana-
lyze the statistical properties of qi. Figure 3a shows that
the distribution P (q) for the same four stocks displays a
power-law decay P (q) ∼ 1/q1+ζ. When we extend this
analysis to each of the 1000 stocks, we obtain the average
value ζ = 1.53 ± 0.07 [Fig. 3b].

Note that ζ is within the stable Lévy domain
0 < ζ < 2, suggesting that P (q) is a positive (or
one-sided) Lévy stable distribution [8,9]. Therefore, the
reason why the distribution P (Q∆t) has similar asymp-
totic behavior to P (q), is that P (q) is Lévy stable, and
Q∆t is related to q through Eq. (3). Indeed, our estimate
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of ζ is comparable within error bounds to our estimate of
λ. We also investigate if the qi are correlated in “trans-
action time”, defined by i, and we find only “weak” cor-
relations (the analog of δ has a value = 0.57± 0.04, close
to 0.5).

To confirm that P (q) is Lévy stable, we also exam-
ine the behavior of Qn ≡

∑n
i=1 qi. We first analyze

the asymptotic behavior of P (Qn) for increasing n. For
a Lévy stable distribution, n1/ζ P ([Qn − 〈Qn〉]/n1/ζ)
should have the same functional form as P (q), where
〈Qn〉 = n 〈q〉 and 〈. . .〉 denotes average values. Figure
4a shows that the distribution P (Qn) retains its asymp-
totic behavior for a range of n — consistent with a Lévy
stable distribution. We obtain an independent estimate
of the exponent ζ by analyzing the scaling behavior of
the moments µr(n) ≡ 〈|Qn − 〈Qn〉|r〉, where r < λ [10].
For a Lévy stable distribution [µr(n)]1/r ∼ n1/ζ . Hence,
we plot [µr(n)]1/r as a function of n [Fig. 4b,c] and ob-
tain an inverse slope of ζ = 1.45±0.03 — consistent with
our previous estimate of ζ [11].

Since the qi have only weak correlations (the analog of

δ has the value = 0.57), we ask how Q∆t ≡
∑N∆t

i=1 qi

can show much stronger correlations (δ = 0.83). To
address this question, we note that (i) N∆t is long-
range correlated [14], and (ii) P (q) is consistent with a
Lévy stable distribution with exponent ζ, and therefore,

N
1/ζ
∆t P ([Q∆t−〈q〉N∆t]/N

1/ζ
∆t ) should, from Eq. (3), have

the same distribution as any of the qi. Thus, we hypothe-
size that the dependence of Q∆t on N∆t can be separated

by defining χ ≡ [Q∆t − 〈q〉N∆t]/N
1/ζ
∆t , where χ is a one-

sided Lévy-distributed variable with zero mean and ex-
ponent ζ [8,9]. To test this hypothesis, we first analyze
P (χ) and find similar asymptotic behavior to P (Q∆t)
[Fig. 4d]. Next, we analyze correlations in χ and find
only weak correlations [Fig. 4e,f] — implying that the
correlations in Q∆t are largely due to those of N∆t.

An interesting implication is an explanation for the
previously-observed [12,13] equal-time correlations be-
tween Q∆t and volatility V∆t, which is the local standard
deviation of price changes G∆t. Now V∆t = W∆t

√
N∆t,

since G∆t depends on N∆t through the relation G∆t =
W∆t

√
N∆t ǫ , where ǫ is a Gaussian-distributed variable

with zero mean and unit variance and W 2
∆t is the vari-

ance of price changes due to all N∆t transactions in
∆t [14]. Consider the equal-time correlation, 〈Q∆t V∆t〉,
where the means are subtracted from Q∆t and V∆t. Since

Q∆t depends on N∆t through Q∆t = 〈q〉N∆t + N
1/ζ
∆t χ,

and the equal-time correlations 〈N∆t W∆t〉, 〈N∆t χ〉, and
〈W∆t χ〉 are small (correlation coefficient of the order
of ≈ 0.1), it follows that the equal-time correlation

〈Q∆t V∆t〉 ∝ 〈N3/2

∆t 〉−〈N∆t〉〈N1/2

∆t 〉, which is positive due
to the Cauchy-Schwartz inequality. Therefore, 〈Q∆t V∆t〉
is large because of N∆t.
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Topics in Physics (Springer, Berlin, 1995); C. Tsal-
lis, Physics World 10, 42 (1997); J.-P. Bouchaud and
A. Georges, Phys. Rep. 195, 127 (1990).

[9] The general form of a characteristic function of
a Lévy stable distribution is ln ϕ(x) ≡ iµx −

γ|x|α
[

1 + iβ x
|x|

tg
(

π
2
α
)

]

[α 6= 1], where 0 < α < 2, γ

is a positive number, µ is the mean, and β is an asym-
metry parameter. The case where the parameter β = 1
gives a positive or one-sided Lévy stable distribution.
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FIG. 1. (a) Number of shares traded [15] for Exxon Cor-
poration (upper panel) for an interval ∆t = 15 min com-
pared to a series of Gaussian random numbers with the
same mean and variance (lower panel). (b) Probability
density function P (Q∆t) for 4 actively-traded stocks Exxon
Corp., General Electric Co., Coca Cola Corp., and A T
& T Corp., shows an asymptotic power-law behavior char-
acterized by an exponent 1 + λ. Hill’s method [16] gives
λ = 1.87 ± 0.14, 2.10 ± 0.17, 1.91 ± 0.20, and 1.71 ± 0.09 re-
spectively. (c) P (Q∆t) for 1000 stocks on a log-log scale.
To choose compatible sampling time intervals ∆t, we first
partition the 1000 companies studied into six groups [14] de-
noted I - VI, based upon the average time interval between
trades δt. For each group, we choose ∆t > 10 δt, to en-
sure that each interval has a sufficient N∆t. Thus we choose
∆t = 15, 39, 65, 78, 130 and 390 min for groups I - VI respec-
tively, each containing ≈ 150 companies. Since the average
value of Q∆t differs from one company to the other, we nor-
malize Q∆t by its average. Each symbol shows the probability
density function of normalized Q∆t for all companies that be-
long to each group. Power-law regressions on the density func-
tions of each group yield the mean value λ = 1.78± 0.07. (d)
Histogram of exponents λi for i = 1, . . . , 1000 stocks obtained
using Hill’s estimator [16], shows an approximately Gaussian
spread around the average value λ = 1.7 ± 0.1.
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FIG. 2. (a) Detrended fluctuation function F (τ ) for
(Q∆t)

a for a = 0.5 [7], averaged for all stocks within each
group (I-VI) as a function of the time lag τ . F (τ ) for a time
series is defined as the χ2 deviation of a linear fit to the in-
tegrated time series in a box of size τ [5]. An uncorrelated
time series displays to F (τ ) ∼ τ δ, where δ = 0.5, whereas
long-range correlated time series display values of exponent in
the range 0.5 < δ ≤ 1. In order to detect genuine long-range
correlations, the U-shaped intraday pattern for Q∆t is re-
moved by dividing each Q∆t by the intraday pattern [3]. (b)
Histogram of δ obtained by fitting F (τ ) with a power-law for
each of the 1000 companies. We obtain a mean value of the
exponent 0.83 ± 0.02.
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FIG. 3. (a) Probability density function of the num-
ber of shares qi traded, normalized by the average value,
for all transactions for the same four actively-traded
stocks. We find an asymptotic power-law behavior
characterized by an exponent ζ. Fits yield values
ζ = 1.87±0.13, 1.61±0.08, 1.66±0.05, 1.47±0.04, respectively
for each of the 4 stocks. (b) Histogram of the values of ζ ob-
tained for each of the 1000 stocks using Hill’s estimator [16],
whereby we find the average value ζ = 1.53 ± 0.07.
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FIG. 4. (a) Probability distribution of Qn as a function of
increasing n = 1, . . . , 256 apparently retains the same asymp-
totic behavior. (b) Scaling of the rth moments µr with in-
creasing n for the same four stocks. The inverse slope of this
line yields an independent estimate of the exponent ζ. We
obtain ζ = 1.43 ± 0.02, 1.35 ± 0.03, 1.42 ± 0.01, 1.41 ± 0.02
respectively. (c) Histogram of exponents ζ obtained by fit-
ting a power-law to the equivalent of part (b) for all 1000
stocks studied. We thus obtain a value ζ = 1.45 ± 0.03 con-
sistent with our previous estimate using Hill’s estimator. (d)
Histogram of slopes estimated using Hill’s estimator for the
scaled variable χ ≡ [Q∆t −〈q〉N∆t]/N

1/ζ
∆t compared to that of

Q∆t. We obtain a mean value 1.7 ± 0.1 for the tail exponent
of χ, consistent with our estimate of the tail exponent λ for
Q∆t. (e) Detrended fluctuation function F (τ ) for χ, where
each symbol denotes an average of F (τ ) for all stocks within
each group (I-VI as in Fig. 1). (f) Histogram of detrended
fluctuation exponents for χ. We obtain an average value for
the exponent 0.61 ± 0.03 which indicates only weak correla-
tions compared to the value of the exponent δ = 0.83 ± 0.03
for Q∆t.
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