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This article develops a multiperiod rational ex-
Dpectations model of stock trading in which in-
vestors bave differential information concern-
ing the underlying value of the stock. Investors
trade competitively in the stock market based on
their private information and the information
revealed by the market-clearing prices, as well
as other public news. We examine bow trading
volume is related to the information flow in the
market and bow investors’ trading reveals their
private information.

This article presents a multiperiod model of stock
trading under differential information. At each trading
date, investors receive both private and public infor-
mation concerning the underlying value of the stock.
Based on their information, investors trade compet-
itively in the market either to accommodate supply
shocks (noninformational trading) or to speculate on
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future price changes (informational trading). We use the model to an-
alyze the dynamic behavior of equilibrium trading volume and its re-
lation to price changes. In particular, we examine how trading volume
is related to the information flow in the market, and how investors’
trading reveals their private information.

We find that over time the pattern of volume is closely related to
the flow and nature of information. Since equilibrium prices are noisy
and do not fully reveal all the investors’ information, investors trade
many rounds after they first receive their private information. The cur-
rent volume is not only related to the contemporaneous information
flow, but also related to existing private information received previ-
ously. In fact, volume can reach its peak many periods after investors
first receive private information. This implies that volume is serially
correlated even when the information flow is independent over time.

In our model, investors’ informational trading depends on the ex-
pected gains from speculation and the risk involved. As investors con-
tinue to trade, more private information is revealed through prices,
and the expected gains from speculation decrease. The risk associated
with speculation, however, depends on two factors. One is the uncer-
tainty in the stock’s future payoff; the other is the trading opportunities
remaining before the uncertainty is fully resolved. The uncertainty in
the future payoff decreases over time as more private information is
revealed, which tends to make investors speculate more aggressively.
On the other hand, as the terminal date approaches, there are fewer
trading opportunities left and it becomes more difficult to unload any
positions. This tends to make speculation less aggressive. The trade-
off between these two factors determines investors’ dynamic trading
strategies. Thus, investors maintain aggressive speculative positions
at early dates and then unwind their positions as the terminal date
approaches.

When there will be public announcements, investors optimally time
their trades. They increase their speculative positions just prior to
a public announcement and reduce their positions immediately af-
terwards. Consequently, high volume is observed around such an-
nouncements. The pattern of abnormal trading generated by a public
announcement depends on its timing. Furthermore, the total amount
of information revealed by the trading around the announcement also
depends on the announcement’s timing. When the timing is such that
more trading is generated by the announcement, more information is
revealed.

Our model also leads to interesting results about the relation be-
tween trading volume and price volatility. Exogenous information
leads to trading and changes the stock price, since both expectations
and the uncertainty about the value of the stock change with the new
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information. Thus, high volume generated by the exogenous infor-
mation, private or public, is accompanied by high volatility in prices.
However, high volume of trading generated by the existing private in-
formation is not accompanied by abnormally high volatility in prices.
In this case, the trading is mainly due to investors’ need to unwind
their positions against each other. It does not generate large changes
in their expectations or the uncertainty about the value of the stock.!

Our results have several empirical implications. It is well known
that stock trading volume exhibits high serial correlation.? In a com-
petitive market, trading occurs when investors receive new informa-
tion, either public or private. When all information is public, clus-
tering in trading implies that arrivals of new information are serially
correlated.? When there is private information, however, our model
shows that clustering in trading can be generated by independent in-
formation arrivals. Several authors [e.g., Clark (1973) and Lamoureux
and Lastrapes (1990, 1992)] have tried to link price volatility with the
underlying information flow in the market, and have used volume
as a measure of the information flow. Our results show that volume
may lag behind the information flow when the information is private.
Moreover, volume generated by new information is accompanied by
significant price changes, while volume generated by existing (pri-
vate) information is not.*

The setting in this article is the multiperiod counterpart of the clas-
sical rational expectations model originally developed by Grossman
(1976), and subsequently extended by Diamond and Verrecchia (1981)
and Hellwig (1980), among others. It is well known that solving in-
tertemporal trading models with differential information often faces
the problem of a high dimensional state space. In general, the equi-
librium depends on the hierarchy of expectations, including each in-
vestor’s expectation of the true state of the economy (first-order expec-

Although we do not focus on the behavior of price volatility here, it is worth pointing out that
under differential information there are subsequent price changes after an exogenous information
shock [see also Grundy and McNichols (1989) and Shalen (1993)]. This implies that with private
information, independent information flow can, over time, generate serially correlated changes
in prices. However, the subsequent price changes are small compared with the initial response
and decrease over time. The corresponding volume can be comparable to the initial volume and
vary a lot.

See, e.g., Campbell, Grossman, and Wang (1993), Gallant, Rossi, and Tauchen (1992), and LeBaron
(1992) for results on the aggregate stock trading volume.

For models of dynamic trading without private information, see Dumas (1989) and Huffman
(1987). See also Wang (1994).

Kyle (1985, 1989) considers the situation when informed investors behave strategically to max-
imize the gains of their information trading. They trade gradually in order to prevent private
information from being revealed too quickly and to extract more profits. Admati and Pfleiderer
(1988) also study a trading model with strategic behavior. In this article, we follow the competitive
approach.

921



The Review of Financial Studies /v 8 n 4 1995

tations), the expectation of other investors’ expectations, etc. (higher-
order expectations). The number of these expectations needed to
characterize the equilibrium generally increases with the history of
the economy and so does the dimension of the state space. This of-
ten makes the solution intractable.’ In the limit when the history is
infinite-dimensional, one encounters the “infinite regress” problem
[see, e.g., Townsend (1983)] where the order of independent expec-
tations and the dimension of the state space become infinite. In the
current model, we show that all higher-order expectations can be
reduced to the first-order expectations and we are able to derive a
solution to the multiperiod rational expectations equilibrium.

Recent literature closely related to this paper includes Brown and
Jennings (1989), Grundy and McNichols (1989), Kim and Verrecchia
(1991a,b), and Pfleiderer (1984). For example, Grundy and McNichols
(1989) consider a three-date model similar to ours and analyze its
rational expectations equilibrium. The current model can be viewed
as an extension of earlier models in two ways. First, it is a general
multiperiod model; second, it allows more general information flow to
the economy. A truly multiperiod model is necessary for studying the
dynamic behavior of trading volume.® The more general information
flow in a dynamic setting allows us to analyze the impact of different
types of information on trading volume.

Several authors have studied dynamic trading models in the case of
superior private information where some investors are better informed
than others [see, e.g., Foster and Viswanathan (1993a), Gennotte and
Kyle (1991), and Wang (1993)]. In particular, Wang (1994) provides
a model of intertemporal trading volume with superior private infor-
mation. The infinite regress problem vanishes in those models due to
the assumption that the better informed investors observe everything
known to the less informed investors. In the current model, private
information takes the form of differential information, where each
investor has some information that other investors do not possess.

The article is organized as follows. We specify the model in Sec-
tion 1 and solve the equilibrium in Section 2. In Section 3, we discuss
the general properties of the equilibrium, and in Section 4 we exam-
ine the behavior of prices and volume, especially the relation between

5 Singleton (1987) considers the special case when private information is short lived — the true
state of the economy is revealed after two periods. In the current model, we do allow long-lived
private information — the true state of the economy may never be revealed.

6 We note that in models with three dates (0, 1, 2), trading occurs only in the first two dates. The
volume on the first date depends on the specification of investors’ initial endowments. The only
truly endogenous volume is the volume in the second date. Thus, these models cannot be used
to analyze the dynamics of volume. Shalen (1993) analyzes the volume in a setting with three
dates.
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information flow and the dynamics of volume. Section 5 concludes.

The Model

We consider a multiperiod model of stock trading in which investors
receive in each period both private and public information concerning
the underlying value of the stock. Investors trade competitively in the
market based on their information. There also exists noise in the mar-
ket that prevents the equilibrium price from fully revealing investors’
private information. The model is further defined as follows.

1.1 Investment opportunities
There is a riskless asset and a risky asset (“stock”) available for trading
at dates 1, ..., T — 1. The riskless asset is of perfectly elastic supply
with the rate of return  being a nonnegative constant. For simplicity,
we assume r = 0. Each share of the stock pays a liquidation value of
IT + § at the final date 7. Shares of the stock are infinitely divisible
and are traded competitively in the stock market. Let the equilibrium
share price of the stock at date ¢ be P;.

The stock is of a given supply which may change over time. Let
®; be the number of shares available in the market at date ¢, ¢t =
1,..., T — 1. O, follows an AR(1) process:

0, =ap®;_1 + €0, 1)

where —1 < ag < 1 and €g; ~ N (O, Ué). The assumption of a ran-
dom supply of the stock is equivalent to the usual noise trading story,
that is, the liquidity traders have inelastic demands of 1 — ®, shares of
the stock at ¢, leaving the remaining ®, shares to the market (assum-
ing that the total number of shares is one). Changes in the liquidity
traders’ demands will then generate noise trading and changes in the
shares supplied to the market. When ag = 0, the amount of noise
trading is i.i.d. over time, which is likely to happen when the time
between two consecutive trading dates is very large. When ag — 1,
the incremental changes of noise trading become i.i.d. over time. This
is likely to happen when the time between two consecutive trading
dates is very small.

1.2 Investors
Let Z be the set of investors in the economy. Investor i € Z maximizes
expected utility of the form

E[- e % | ], @
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where W.. is his consumption at the final date 7', F/ his informa-
tion set at date ¢, and A his Arrow-Pratt risk aversion coefficient. We
have assumed that investors only consume at the last date. It can be
shown that allowing intermediate consumption is a straightforward
extension.

We assume that Z = {1, 2, ...}, that is, the set of natural numbers.
[See Pfleiderer (1984) for a similar approach.] This assumption simpli-
fies the equilibrium price function significantly. For the convenience of
aggregation, we define a charge space (Z, 9 (I), u) where p (I) is the
collection of all subsets of Z and u : o (Z) — R is a finitely additive
measure with the property that u(4) = limy—oo %#(A{l, 2,...,N}),
VA C T for which the limit exists, where #(-) denotes the number
of elements in the set [see Feldman and Gilles (1985) and Rao and
Rao (1983)]. Clearly, investors are equally weighted according to the
defined measure. The aggregation of the random variable z* (i € 1)
over Z with respect to u is then given by

‘ , 1 &
2= 2Z'du(i) = lim — ) z 3)
-/i -/;el' N—oo N ;

1.3 Information structure
All investors have the same prior information about IT, § and ©.
Assume that the prior distributions are T ~ N(0, o), § ~ N(0, o3),
Oy ~ N(O, oé/(l - aé)), and II, 8, ©g are uncorrelated. Note that
the prior distribution about ® is simply the stationary distribution of
©,. This specific prior distribution is assumed merely for the simplicity
of exposition below.

At each date ¢, investor i € T receives a private signal S/ about the
first component of the stock’s liquidation value IT:

S, =M+eg,, (4)

where €} , is the noise in investor #’s signal. For simplicity, we assume
thatel, ~ N(0,02,) and is i.i.d. across investors. In addition to private
signals, investors receive a public signal ¥; about IT:

Y =+ €y, )

where €y, ~ N(O, 0}2,, ;) is the i.i.d. noise in the public signal. Also,
P, is observable to all investors. Thus, we can write the investors’
information set as follows:

Fl={Fo,P.. Y., S :1<t<1t), iel, (6)

where Fy represents prior information as given by the prior distribu-
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tions. Since 63, is i.i.d. across investors, information is symmetrically
distributed among investors.’

For simplicity, we shall assume that all the shocks to the economy,
{€o.1, €v.1s ef;! , 1 € T}, are jointly normal, independent of each other,
independent over time, and independent from I1, §, and ©. As will
become clear, extensions to more general correlation structure, except
for the correlation between the signals of different investors are quite
straightforward. Note that there are two components in the value of
the stock, IT and §. Investors are endowed with information about IT,
but no information is available about §. Moreover, the total amount
of private information is sufficient to infer the true value of IT in the
current model. As the number of trading dates increases, more private
information will be revealed by equilibrium prices and the true value
of TT will eventually be revealed. However, the other component of
the liquidating value § is never revealed before the terminal date.
Thus, the uncertainty about the value of the stock remains until the
end of the economy, when o5 # 0.

2. Equilibrium

In this section, we solve for the equilibrium of the economy defined
above.

2.1 Notation
For future references, we first introduce some notation. Define

e F/ = the common information available to all investors at date ¢

o F’' = the private information available to investor ¢ at date t;
and
e F/ = the total information available to investor 7 at date .

If we introduce the notation Z, = (Zi, ..., Z;) for any stochastic pro-
cess {Z;} (i.e., Z, represents the history of Z; up to and including ),

7 The more general situation would be to allow €} , to have different variance for different investors
and to be correlated across investors. Let i and # be two investors. In the case that Varle || <
i/ ’ . . ; . '

Varle | and Eleg e ] = 0, investor i has a signal independent from that of #, but with better

precision. However, since the two signals are independent, €, is still informative to 7 given € ,.
! ) s,

If Eleg 5,1 # 0, there would be common noise in the two investors’ signals. Suppose there is

common noise in all the investors’ signals. Then, aggregation of information across all investors

would not reveal the true value of IT even when the number of investors goes to infinity [see

/

Pfleiderer (1984)]. Another case is when €, = €5, + e and Ele | €5 ] = 0. Then, the signal €;,
/ . . A . / N

strictly dominates the signal € ,. Given € ,, no additional information is provided by € ,. In this

case, investor i has superior information than #. For this paper, we restrict ourselves to the case

with € , i.i.d. across all investors.
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then
ff={f0’£t,zt}s ftp,l={_5ﬁ}5 and ]:[i={fOs£t’Xp_S:}'

Next, for any stochastic process {Z;}, we define, respectively, expec-
tations conditional on F¢, Ff*' and F:

Z¢ = B[z | 7],

2

E[Z, | ff’i] , and

Z! = B[z | F].

Finally, let
B0 = B[ | 7], B =E[1 7], Ell1=E[| 7] and
Vil = Var[-| 7], VP = var [ | 7], Vit = Var [ 7]

denote, respectively, the expectations and variances conditional on
the different information sets defined above. In particular, let

of =V{Il and o = Vf[l’I]

denote, respectively, the conditional variances of the underlying asset
value IT for an investor who only observes public information and
an investor who observes both public and private information. Given
that there is perfect symmetry among investors in the quality of their
private information, V:[IT] should be the same for all investors. Thus
we omit the superscript i and use o, to denote it.

Under differential information, the state of the economy at date ¢
depends on the whole history of the economy up to and including
t. Define ®, as the vector of state variables of the economy. Then,
@, = (I1; ©,; Y,; {Si}iez). We will also use L[] to denote a general
linear relation. For example, P, = L[Z,] means that P; is a linear
function of Z,. Since we often do not care about the actual functional
form within the linear class, the same symbol is used for different
functions. For example, no time subscript is attached, even though
the actual function may depend on ¢. In addition, for variable Z; let
AZ, denote its first difference Z; — Z;_;.

2.2 Stock market equilibrium
Given the well-known properties of CARA preferences under normal
distributions of payoffs and signals, we only consider the linear equi-
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libria of the economy.? In a linear equilibrium, the equilibrium stock
price can be expressed as a linear function of the state variables of
the economy. In other words, we have

P, =L[d,]. @)

The general history dependence of the equilibrium under differen-
tial information leads to difficulties in solving the equilibrium since
the dimensionality of the state variables increases over time without
bound.

In the current setting, however, the general history dependence can
be simplified by properly choosing the state space. The equilibrium
can be fully characterized by a small number of state variables which
only include first-order expectations. This allows us to solve for the
equilibrium prices and trading volume. Our main result is presented
in the following theorem.

Theorem 1. In a linear equilibrium of the economy, (1) the price
Junction bas the following form:

Pr=Q1 - pn )OS+ pn 1 — po,®, = (1 — pn )T+ pn& (8)

where &, =T — 0, and p, = p‘L'j; (2) the conditional expectations
are determined by the following linear filtering equations:

¢ 1 0 ne £ — ES_l&))
)= SR B 3 ©)
e¢ 0 de ec Y, — ES_[Y))
and
-~ . A~ . - Ei_ [ ]
n; 1 0 H;_l St t 1$t
OF 0 ae -1 i i i
St - Et—l[St]

and (3) investor i’s optimal stock bolding is given by
X =0!+h (0 -1, ieL (11)

Here, Kf, K; and b, are, respectively, (2 x 2), (2 x 3), and (1 x 1)
constant matrices.

® The combination of CARA preferences and normally distributed payoffs is often used in the
literature to study the linear rational expectations equilibrium under asymmetric information. See,
e.g., Diamond and Verrecchia (1981), Grossman (1976, 1981), Grossman and Stiglitz (1980), and
Hellwig (1980), in static settings, and Brown and Jennings (1989), Grundy and McNichols (1989),
and Wang (1994) in dynamic settings.
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Before we provide a proof for Theorem 1, several comments on the
nature of the equilibrium are in order. First, the equilibrium stock price
depends only on three variables: IT, ©;, and I1{. The general history
dependence of the equilibrium price as expressed in Equation (7)
is summarized by a single variable TI{! This significantly simplifies
the characterization of the equilibrium. Second, the system of these
variables follows a Gaussian Markov process under public information
or the information of individual investors. This allows simple solutions
to investors’ optimization problems. Third, Equation (8) is an implicit
equation for the equilibrium price, since IT{ on the right-hand side is
an endogenous variable and depends on P; itself. This dependence
is, however, linear, as given in Equation (9). Solving P; explicitly from
Equation (8) is a trivial matter. With this clarification in mind, we will
use Equation (8) as our pricing equation in the remainder of the paper.

The equilibrium stock price depends on ®; and the true value of IT.
Although the random stock supply ©, is independent from the stock’s
cash flows, it enters the price function because it affects the number of
stock shares held by the investors, hence, the total risk the economy
has to bear [see, e.g., Campbell and Kyle (1993) and Grossman and
Miller (1988)]. IT is not in any investor’s information set. A priori, one
would not expect it to appear directly in the price function. Instead,
the price should depend on the average of individual expectations of
I1, which in turn depends on the average of private signals. In the
current setup, however, there are an infinite number of investors, and
their private signals have i.i.d. noise. By the Law of Large Numbers,
the average of all private signals is I1. Therefore, the equilibrium price
depends on the true value of IT and is not affected by the noise in in-
dividual signals (see also Lemma 1 in the next section). ? Furthermore,
in Equation (8) the coefficients of IT and ['IC add up to one. This is
because a constant shift in IT will shift both l'l‘ and I'[’ as well as P,
by the same constant. (Recall that the riskless rate is assumed to be
Zero.)

2.3 Expectations, stock demand, and market clearing

We now sketch a four-step proof for Theorem 1. First, we discuss
some general properties of the linear equilibrium as defined by Equa-
tion (7). Second, we derive the dynamics of investors’ expectations
in a linear equilibrium as defined by Equation (7), and show how
the infinite regress problem (i.e., forecasting the forecasts of others)
is resolved in our setting. Next, we derive investors’ optimal stock

If the noises in private signals are correlated, the average of the signals does not give the true
value of TI. Instead, it will be TT plus the common noise. Our analysis can be extended to this
case.
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demands in a linear equilibrium. Finally, we show that by imposing
the market-clearing condition, the equilibrium stock price is given in
Equation (8) and investors’ optimal stock holdings in equilibrium are
given by Equation (11).

2.3.1 Equilibrium price function. Let us consider a general linear
equilibrium as defined by Equation (7). The vector of state variables ®,
is defined as the whole history of exogenous shocks to the economy,
including supply shocks, public announcements, and private signals.
Under the symmetry among investors in the quality of their signals,
the following lemma is immediate:

Lemma 1. In alinear equilibrium, the price function can be expressed
as follows:

p,=L[N,0,Y,] (12)
Furthermore, we can rewrite P; as
PI=L[nv ®tv Yt’£1_1’X;_1]' (13)

Equation (12) says that the dependence of the price on investors’
private signals results in the dependence on the true value of IT.1°

Equation (13) expresses the current equilibrium price as a function
of current exogenous variables and past public information includ-
ing past prices and announcements.!! The history dependence of the
equilibrium price reflects the fact that investors’ expectations depend
on their information, which includes past prices and announcements.
This suggests the possibility of simplifying the price function by ex-
pressing it in terms of investors’ conditional expectations instead of
their information sets or the exogenous state variable.

Let us now consider the information content of equilibrium prices
in a linear equilibrium. We can rewrite Equation (13) as

P =ay (Il — 1,0 + b Y + L[E,_l, X;_l] . (14)

' Due to the symmetry among investors in the quality of their signals, their signals should enter
the price function with equal weights. Thus, the general form of the price function satisfying the

symmetry will be
t
P = E [bfs / S+ b Y — bfﬁ@,s] .
1

5=0
Since f S;_; = I1 by the Law of Large Numbers, we arrive at the form in Equation (12).
1

WAt t =1, P, =L[,60,, Y] Thus, ® = L[[I,P, Y]. At t = 2, P, = L[1,0,,0,, 1, ;] =
LTI, ©,, Y», Py, Y1]. The statement then follows by induction.

929



The Review of Financial Studies /v 8 n 4 1995

This implies that, given past prices and announcements as well as the
current announcement, observing the current price is equivalent to
observing & = I1 — u;0,, which is a linear combination of the two
unknowns. Consequently, in a linear equilibrium the information set

= {¥o, P,, ¥,} is equivalent to the information set {Fo, § » Y,}, that
1s, {-7:0,5;,!;} < {angtazt}'

Our ultimate goal is to prove that in equilibrium, Equation (14)
reduces to Equation (8). This is equivalent to showing that in Equa-
tion (14) b Y,+LP,_,, Y, ;] =LII{], and only three variables, IT, ©,,
and l'[f, are sufficient to determine the equilibrium price. Put differ-
ently, the specific form of Equation (8) imposes a particular structure
on the general linear price function as expressed in Equation (14),
especially on its coefficients. Under this specific structure, the depen-
dence of the current price on the history of the economy is compactly
summarized by its dependence on IT.

2.3.2 Investors’ expectations. In order to derive each investor’s
optimal stock demand, we have to solve the conditional expectations,
given his information set. In the linear equilibrium of Equation (12),
calculating the conditional expectations of the true state variables is
a linear filtering problem, since all the signals are linear in the state
variables, including endogenous signals such as prices.

Utilizing the equivalence between the two information sets, {F, P,,
Y,} and {Fo0,§,, Y}, we can solve for conditional expectations of
IT and ©; based on, respectively, the common information ¥} and
each investor’s information .7-7, i € Z. The results on the first-order
expectations (i.e., the expectations of the true values of IT and ©)),
are summarized in the following lemma, the proof of which can be
found in Appendix A.

Lemma 2. Given the linear price function of Equation (7), (H @C)
and (l'I i 1) are determined by the following stochastic difference
equations

e ES (M) & —ECE)
~ = K; 1
( ¢ ) ( E/_,[©/] )+ ( Y, —Ef_ Y] ) (15)

~ : —E;_,[&]
mn E!_,[M] S = Byl
)= L +K| L -E_m |, (16)
0; E;_,[©] i i i
St — Et—l[St]

and TI§ = T} = OF = O} = 0. The conditional variances of Tl and
®; are deterministic and given in Appendix A.
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Remark. Note that E;_,[I1] = ﬁf_l and E{_,[0,] = a@@f_l. Equa-
tion (15) can be expressed as a recursive equation of {ﬁc, @C} with
the surprises in §; and Y; as innovations. Thus, under the information
process generated by F7, { l'l @C} follows a Gaussian Markov pro-
cess. Similarly, {l'l’, @’ l'IC @f} follows a Gaussian Markov process
under the information process generated by F7.12

In general, investor #’s trading strategy depends not only on his first-
order expectations but also on his higher-order expectations, such as
his suppositions about other investors’ expectations. In the current
model, however, the higher-order expectations can be reduced to
first-order expectations, allowing us to solve the equilibrium in closed
form. Let I'[, =/, l'l be the market average of investors’ expectations

of I, and i,  =E; [l'l 1 be investor #'s expectation of the market average
Ai

expectation of I1. Then, H (= fil'[ is the market average of investors’

expectations of T,. We have the following lemma, the proof of which
can be found in Appendix B.

Lemma 3. Let w;' = %4_4.0—1;, anda,; = O+w Then,
ey ~ i Api Lst
O =aff+Q-a)f, O'=wd == a7)
=1 GS,T

This implies that

= o, + (1 — o),

~

-

o, TI§ + (1 — eI,

oy =) 2
I

a,ﬁf+(1 —Clt)ﬁt. 18

~

The first part of the lemma states that investor #’s expectation of I1,
conditional on his information, is a weighted average of his first-order

12 Clearly, {IT}, ©}} follows a Gaussian Markov process under F/. In order to see that {IT!, ®!, TI¢, ©¢}
does as well, note that we can rewrite Equation (15) as

e ( ES_ (M) ) ( E,_ &) - EC_ (&) ) ( & —E|_ &) )

~ = + K} + Kf .

o E_10/] E._,[Y] - EC_[Y] Y, —EL_,[¥)
Furthermore, E, lE,] —A a@p., i 1, [S, = —a@u,/@\; L ES 1Y) =A‘ E_lY]=

A; 1, and {n,, @,, H,, o} C F!. Thus, {l'l’ @‘ I'[‘ @C} follows a Markov process under F.
Furthermore, note that & = IT — u,0, C F; € F,. Thus, I'I - u,@’ 1'[ - u,@ = l'I — 05,

931



The Review of Financial Studies /v 8 n 4 1995

expectations, conditional only on the public information and on his
private signals, respectively. The second part of the lemma shows
that the second-order expectations (of IT) are a weighted average of
two first-order expectations: the expectation of IT conditional only on
public information and the expectation of IT conditional on both the
public and the private information. In other words, it is a linear func-
tion of the first-order expectations. It is then easy to see that investor
s higher-order expectations can also be expressed as a linear func-
tion of his first-order expectations. Consequently, the number of state
variables necessary to characterize the equilibrium of this economy
does not explode as it would in general.

Our model has a finite time horizon and a finite dimensionality
of unknown variables. The history of the economy at any point in
time is finite dimensional and the number of state variables needed
to characterize the equilibrium is finite, although it increases over
time without bound. This differs from the infinite horizon situation
considered by Townsend (1983) where the infinite regress problem
arises. However, the nature of the problem here is similar to the in-
finite regress problem. With heterogeneous information, the state of
the economy generally depends on its whole history, since investors’
expectations are based on the sample path of the economy. When
we try to express the history dependence through the expectations of
investors, a hierarchy of expectations is needed. In the current setting,
we are able to show that a few layers of expectations are sufficient
to characterize the equilibrium. In particular, two expectations (indi-
vidual investors’ conditional expectations and their expectations of
the market average of individual expectations) span the space of ex-
pectations, even though the dimensionality of the economy increases
with the lifetime of the economy. In the continuous-time limit of the
current model (with finite horizon), the history of the economy be-
comes infinite dimensional. The situation is then very similar to that
of Townsend (with discrete time and infinite horizon) and the infinite
regress problem does arise in general. It can be shown that the form
of our solution remains the same in the continuous-time limit and two
first-order expectations span the space of expectations. In this case,
our model provides an example where the infinite regress problem
can be resolved by collapsing the whole hierarchy of expectations into
a few low-order expectations. (The solution to the continuous-time
limit of the current model is available from the authors on request.)

2.3.3 Investors’ optimal stock demand. Let Qi = Py — P
be the excess return on one share of stock. An investor’s optimal
stock demand is given by the solution to the following optimization
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problem:

max E [— eV | F] a»

t

Wiy = W, + X/ Qi

We have the following lemma, the proof of which can be found in
Appendix C.

Lemma 4. LetV, be a Gaussian process, P, = L(¥,) and ¥} = E}[¥,].
Suppose that Q; and V|, both measurable with respect to F}, are Gaus-
sian processes under information {F! : 1 < t < T} and

Qi1 = Ag 1V, + Bo1+1€),4 (#1)

W = Ay 1V, + By 1€l (#2)

where Ag, t+1, Ay 141, Bo,141, By 141 are constant matrices of proper
order and e is normal conditional on F}. Then, investor i’s optimal
stock demand has the linear form:

. 1 )
X} = ~FY], (20)

where F, is a constant matrix of proper order.

Remark. The lemma can be applied to the special cases when ¥, =
(13 nv@[vl[)T; qlt - (1 n ®17 )/ta t— 17_[_])T7 and \Ill = (]-v r[7
Oy, l'If)T, respectively.

Equations (#1) and (#2) specify that investor #’s investment oppor-
tunities (i.e., expected future returns) are fully characterized by W/
which follows a Gaussian process. Equation (20) states that investor
i’s optimal stock demand is a linear function of /.

Proof of Theorem 1. Now, we complete the proof of Theorem 1. We
first show that market-clearing of the stock requires the equilibrium
price to have the form of Equation (8). For simplicity, we present the
proof in the case without public announcements. The extension to
the case with public announcements is straightforward. We prove by
induction.

It is easy to show that for T'— 1, Equation (8) is correct. Note that
at T — 1, there is one period to go and the economy is equivalent to
a static one. Then,

Pr_, = ﬁT—l_pQ‘T—1®T—1 = (1—(1T—1)H+01T—1ﬁcr—1—PG,T—1®T—1-
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Now suppose that Equation (8) is true for t = s+ 1,..., T — 1. We
want to show that it is also true for t = s. If the equilibrium price
can be written in the form of Equation (8) for t = s+ 1,..., T —

1, the dimension of the state variables required to characterize the
excess return process for ¢ > s will be greatly reduced. In particular,
\IJ, = (1, 1'[ @,, C)-r fully specifies future returns on the stock, and

= (1, l'[ @;, l'lc)T determines investor #’s expectation of future
returns given his information. Since W/ follows a Gaussian Markov
process, we can substitute it in Lemma 4 fort=s+1,...,T—1to
calculate investors’ expected returns and stock demand. Furthermore
given that Equation (8) holds for ¢t > s, we need only I1 @’ l'lC
and one additional variable, the current price P, to specify rrlvestors’
expectations at r = s. Thus, we can let ¥, = (1, [, ®, TS, P)T.
Substituting all these into Lemma 4, we have the following market-
clearing condition for t = s:

. 1 .
1 1

Solving for P;, we have
P, = L[ﬁs, ﬁf, @5, ®s] .

Smce & eFl(t=1,...,T—1),wehave ﬁ, u,@, & =1I1,— 0,
or @; = 0;+ (l'l, l'l)/u, Furthermore, from Lemma 3, we have
l'[, = a,l'l + (1 — ay)II. Thus, we can express @ and 1'[ in terms of
I1, ®, and l'IC and write

P, =L[M, ©, 0¢].

Hence, Equation (8) is also true for t = s. This completes our proof of
Equation (8). The proofs of Equations (9) and (10) follow immediately
from Lemma 2.

In order to prove Equation (11), we apply Lemma 4 given Equa-
tion (8). From Equation (8) and Equations (9) and (10), we can write
the excess share returns as follows:

O = [A- Prl,t+1)ﬁf+1 -(1- Pn,t)ﬁ,c]
+(Pn,i41 — o, ) = (Do, 1410141 — po,1®) 2D
Investor i’s expected excess share return can be expressed as
E[Qn1 | ] = e0,110} + en 41 (T1) — TI9), (22)

where eq ;41 and eg ;41 are constants (see Appendix D). Intuitively,
en,; and eg ; should be positive. In the case of homogeneous informa-
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tion, it can be shown that eg ; > 0 and the equality holds only when
ae = 1. In the case of differential information, we are not able to sign
en,; and eg ;. For the numerical solutions obtained with a wide range
of parameter values, e ; and eg ; are both positive. In the following
discussions, we will assume that this is the case.

Individual 7’s expected excess return has two components. The first
component, eg,:+10}, represents the excess return expected by the in-
vestors to accommodate the liquidity traders’ demand. Note, however,
that investors do not observe the actual supply of the stock. The pre-
mium they anticipate depends on their expectation of the stock sup-
ply instead of its true value. The second component, ey, t+1(l'[ l'[c),
represents the expected gains based on the investor’s private infor-
mation. Investor ¢ has private information that is not fully reflected
in the price. The difference between his expected value of the stock
and what is reflected in the price gives the expected change in future
prices as the true value is gradually revealed. To simplify notation,
define Al = l'[’ - l'IC From Equations (9) and (10), it is easy to show
that {©F, A’ 1} follows a Gaussian Markov process under the informa-
tion {F/: 1 < t < T}. Thus, we can let \II} = (1, @t, t)T in Lemma 4
(see Appendix C for more details).

Given the simple process of excess share returns, we can obtain
investors’ optimal stock demands by applying Lemma 4:

= d@t@; + dA,tAj

The intuition behind the stock demand function is simple. Note that
©! and A! are the two variables that determine linearly investor i’s
expected excess returns for reasons discussed above. As a result, in-
vestor #’s demand must depend on these two variables.

In order to prove that dg,; = 1, consider the market-clearing con-
dition

~

/i X! = do 0 + dn ([, — i) = ©,.
Since ﬁ, — ,ut@t =TI — u;®, and ﬁt = a,ﬁf + (1 — ay)I1, we have
0= [—%d@,, o at)dA,,] (1 — T1€) + (do., — 1)O.
This leads to two equations with two unknowns:
(do.,—1) =0, —%d@,t+(1—a,)dA,,=o (23)

fort=1,2,..., T —2,T— 1. Equation (11) then follows where b, =
o/l (1 — ap)). Thus, we have completed the proof of Theorem 1.
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We will not provide a formal proof for the existence of a solution to
Equation (23), which is a set of algebraic equations. When o5 = 0,
such a proof is possible (available from the authors on request). When
os # 0, an existence proof is difficult to construct. For the parameters
chosen in the examples below, we are able to solve it numerically. ®

2.4 Computation of the equilibrium

The proof of Theorem 1 suggests that the equilibrium price functions
can be solved by a recursive procedure. Indeed, starting with an initial
guess of or_1, we can solve the equilibrium price functionat 7—1, T—
2, ..., recursively.

Specifically, for given or_1, we first find the equilibrium price func-
tionat T—1 (i.e., pr,7—1 and pg, r—1) as follows: The investor’s optimal
demand function and the equilibrium price function at T'— 1 can be
derived explicitly. The excess return at T is Qr = [1+4+68 — Pr_;. Thus,

Or = Eb_[07) + (IT — TI4_,) +3.

Since there is only one period remaining, investor i’s demand function
at 7' — 1 has the linear form

1 E’}_l[QT]

xi = I =l
=17 Avi_ 07

1 . ~.
= W0 (1= pnr-D)AT_ + po.r107_4].
-1

Let or_1 = V4._,[T1]. This gives

de, -1 - _fera an,r 1=—1_p“'T_1
T Moro 0B’ T Mor—1+09)
We conclude that
Po, 71 = )\.(OT_] + (752), pnr-1= 1—oar. (24)

Given the equilibrium price functions for t = T — 1, we can cal-
culate all the parameters needed for finding the equilibrium price
function at 7' — 2. For example, from Appendixes A, B, and D, we
can calculate K7_1, and Ky._,, as a function of pr 71 and pe r-1. We
can also calculate or_, and 0%_, as a function of or_y, pn,7—2 and
Do, 7—2. A fixed-point solution for pr, 7—2 and pg, r—; is obtained using
Equation (23). The procedure can be repeated for T'— 3, T — 4, ....
(More details can be found in Appendix D.)

Assuming that the fixed-point solutions for pn; and pe,; exist for
all ¢, we should obtain by the recursive procedure a series of price
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functions from time ¢t = 1 to t = T — 1 as a function of the initial
guess or_1. This series of price functions form an equilibrium if of
[updated according to Equation (A.2) in Appendix D] is the same as
of. Otherwise, a numerical search algorithm can be used to find the
right initial guess of or_j.

We emphasize that there may be multiple equilibria in our equi-
librium model. When o5 = 0, however, one can show that there is a
unique linear equilibrium. We discuss this case further in Section 3.
Grundy and McNichols (1989) have shown that when gg = 1 and in-
vestors receive their private information only in the first period, there
could be two equilibria.!> One equilibrium has the unique feature that
prices reveal no new information and there is no trading after the first
period. However, this equilibrium is not generic in the sense that it
exists only when ag = 1 and does not appear when ag < 1 [see
footnote 18 in Grundy and McNichols (1989)]. Since we are restricted
to cases where ag < 1 in our analysis, we will ignore the possibility
of this equilibrium in our future analysis.

Behavior of Prices and Volume

We now use our model to analyze the behavior of equilibrium prices
and volume. In particular, we examine the different patterns of trad-
ing volume that emerge under different specifications of informa-
tion flows. We also consider how private information is gradually
impounded into the equilibrium prices through trading.

3.1 The benchmark case: homogeneous information

Before we examine how private information affects equilibrium prices
and volume, let us consider the special case when investors have
homogeneous information. For simplicity, suppose that the true value
of I1 is known to all investors from the beginning (i.e., 057 = 0). The
remaining risk in the stock’s payoff is 8.

In this case, 1§ = [T = I1, and the equilibrium price of the stock
at date ¢ has the form P, = I1 — pg (®;. Here, Il represents the fun-
damental value of the stock and pg ;0 represents the risk premium.
The risk premium gives the discount on the price to compensate in-
vestors for bearing the risk in the future payoff of the stock, which
is proportional to the total number of shares ®, investors have to

Note that the Grundy-McNichols model corresponds to the case where o5 # 0. In their model,
there are common noises in investors’ signals. The common noise gives the residual risk in the
stock’s payoff that is resolved only at the terminal date. The collection of all investors’ private
information does not fully reveal the true value of the stock. When the common noise goes to
zero, their model reduces to our model with o5 = 0.
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hold.' The parameter pg_, reflects the liquidity of the market, since
it determines the price sensitivity to the amount of noise trading. pe ;
increases with os, the risk in future payoffs, and A, the investors’ risk
aversion parameter. Following Kyle (1985), we can interpret Ei—, as
a measure of market liquidity. It can be shown that under homoge-
neous information, pg ; increases when the terminal date approaches
(i.e., as t goes to T). In the limit that ag — 1, pe,; becomes a con-
stant over time. The intuition behind this is that, given that shocks in
stock supply exhibit mean-reversion, the current shock will eventually
reverse itself. When there are many trading dates left, the investors
can accommodate the current shock by taking additional positions
now and unwinding them later when the shock reverses itself. They
earn excess returns from the market-making activity without neces-
sarily increasing their exposure to the risk associated with underlying
stock value. When there are fewer trading dates left, however, it is
more likely that the investors will not be able to unwind their posi-
tions before the final resolution of uncertainty. Thus, it is more risky
to accommodate the supply shocks. Consequently, a higher premium
is demanded by the investors, pe ; is larger, and the market is less
liquid.

Since the value of [T is public information, the equilibrium price
fully reveals the supply shock ®;. Thus, @ = 0O, and investors’ op-
timal stock holding in equilibrium is X/ @,. Each investor holds a
fair share of the stock that is supplied to the market. This simply re-
flects the investors’ market-making activity in accommodating supply
shocks. The equilibrium volume of trade at date ¢ in this case is

= [1ei- 001110/~ B0l
i
The expected volume at date ¢ is then
N 2
ElV;] = ;Var[A@,],

where A®; = ©;, — ©,_;."% Clearly, under homogeneous informa-
tion, the volume is completely determined by the exogenous sup-

See, e.g., Campbell and Kyle (1993), Grossman and Miller (1988), Spiegel and Subrahmanyam
(1992), and Wang (1993) for more detailed discussions on the equilibrium price in settings similar
to this.

Here, the expectation is taken with respect to the unconditional distribution. One way to justify
this is to assume that the prior is just the stationary distribution as we did in Section 1. This gives

202
Var(A©®,) = 1+a@
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ply shocks. This volume reflects the noninformational trading in the
model.

3.2 The general case: differential information

Let us now consider the general case in which investors have private
information. In the rest of this section, we provide some general dis-
cussions on equilibrium prices, investors’ trading strategies and equi-
librium trading volume. More detailed results are discussed in Sec-
tion 4.

3.2.1 Equilibrium prices. We first consider the equilibrium price.
From the results in the previous section, the equilibrium price of the
stock at date ¢ is

Pt = [pn,,n + (1 - pl_[,t)ﬁ;:] - p®‘[®;.

A few comments about the equilibrium price are in order. It has two
components: the first component is associated with investors’ expec-
tations of the stock’s future payoffs, and the second component is
associated with the risk adjustment, as in the case of homogeneous
information. The first component is not simply proportional to the
average of investors’ expectations about the stock’s underlying value,
which is (1 — )T+, I1{. This differs from the result in static settings
le.g., Admati (1985), Diamond and Verrecchia (1981), and Hellwig
(1981116 In the multi-period setting, investors follow dynamic trad-
ing strategies. They speculate on the changes in future prices, while
in the static setting they only speculate on the terminal value of the
stock. Dynamic trading strategies generate equilibrium prices that are
different from those generated by static strategies [see also Brown and
Jennings (1989), Grundy and McNichols (1989), and Shalen (1993)].
Lastly, even though the equilibrium has the Markov nature, in that it
only depends on the current state variables (including investors’ ex-
pectations), the values of these variables depend on the history of the
economy. In particular, the current price depends on past prices.
Similar to our discussion on homogeneous information, pg ; char-
acterizes the liquidity of the market. Two factors affect pg ,. One is
the uncertainty of the true value of the stock. The other is the number
of trading opportunities remaining before the terminal date, when un-
certainty is fully resolved. The less uncertain the value of the stock, the
lower the premium investors demand, and the smaller is pg_ ;. On the
other hand, the fewer the trading opportunities left, the less willing

16 See also Equation (24), which shows that on T — 1, the date before the terminal date, pn.r-1 =
1 — ;. This is the static result.
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the investors are to take positions, and the higher is pg ;. In the case
of homogeneous and perfect information, the uncertainty about the
stock’s liquidation value (i. e., 03) stays constant throughout the trad-
ing periods. The liquidity is determined purely by the second effect
as discussed above. In the case of differential information, informa-
tion about IT is revealed over time through equilibrium prices. The
revelation of information tends to decrease pg ,, while the reduction
of remaining trading opportunities tends to increase it. The resulting
pattern of pg , over time depends on the trade-off between these two
factors.

Since the number of investors is infinite and the noise in their
signals is 7.i.d., the union of all private signals actually reveals IT.
However, the supply shocks introduce noise into the prices. Thus,
equilibrium prices only partially reveal investors’ private information.
The informativeness of the current price depends on the noise gen-
erated by the current supply shock, which equals u20d. As investors
continue to trade, the sequence of prices reveals more information.
The following corollary of Theorem 1 shows how informative the se-
quence of prices is about the true value of the stock. The proof of
this corollary is contained in Appendix A.

Corollary 1. Let f; =1 — ae ;. Then

1 1 2 1

ey M oy W

Of 0.1  MHi0g Oy,

1 1 2 1 1

— = + {; 7 —+ = 25
O¢ Oi-1 M0y Oy; Og,

where of and o,, the conditional variance of T1 based on Ff and F},
respectively, decrease monotonically over time.

Thus, the amount of private information revealed through the prices
increases with the number of trading rounds.

3.2.2 Trading strategies. Now let us consider investors’ trading
strategies. Given the equilibrium conditions, investor #’s equilibrium
stock holding is

o
= >
pe(l — o)
It has two components. The first component is proportional to i’s
estimate of the supply shock. This component reflects investor #’s po-

sition in accommodating the supply shocks. The second component
is proportional to the difference between his estimation of the stock’s

X' =©!+nAl, b 0. (26)
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underlying value and the estimation based purely on public informa-
tion. This component reflects his_speculative position based on his
private information. When A! = I1} — I1¢ > 0, the underlying value
reflected in the price is lower than what investor i expects. Thus,
he may take a long position in the stock to capture expected future
gains. The coefficient of the second component, b,, characterizes the
intensity of the investor’s speculative trading.!”

It is important to point out that although h,Al, i € Z, gives an
investor’s speculative position, the trading activity generated by dif-
ferential information is not the simple sum of each investor’s spec-
ulative activities. The above decomposition of an investor’s position
into market-making and speculative components is based on his own
information. Given that investors have heterogeneous information,
what is viewed as a noninformational trade by one investor could be
viewed as an informational trade by another.!®

In order to analyze investors’ total trading activities associated with
differential information, we define x/ = X/ — ©,, which is investor
’s position net of the per capita supply shock. Note that ©; is the
position every investor takes as their market-making activity under
homogeneous information. Thus, x! gives the part of investor i’s po-
sition that is purely generated by differential information. Formally,
we can write X/ = ©,+x/. ©, gives the noninformational trading and
x/ gives the informational trading.!” From Theorem 1, Equation (23),
and Lemma 3, we can show that

xi = i (fip'-m). 27)

Exactly speaking, X/ is a linear combination of two parts, one corresponding to the growth part of
the stock demand that is proportional to the expected stock returns, and the other corresponding
to the hedging part given that the expected return changes over time [see Merton (1971)]. Since the

expected return is a linear function of the two state variables ©; and A} and so is the holding of the
hedging portfolio, we can express the total holding as a linear function of the two state variables.
Because A} is nonzero only when investor i has private information, we term as speculative the
part of his stock holding that depends on A;.

It is also possible that investors on the two sides of a trade both think that their trades are
noninformational, but the trading is purely due to differential information. Consider the following
example: Suppose that from ¢ — 1 to ¢, investors maintain their speculative positions and there
is no change in the actual stock suEEly. However, half of the investors think that the supply
has increased by 10 percent (i.e., A®; = 0.1), while the other half thinks that the supply has

decreased by 10 percent (i.e., A@f/ = —0.1). Then there will be trading between the two groups
(with 0.1 volume) and all investors think that their own trades are noninformational.

Although the decomposition of X/ into ©, and x/ has its intuitive appeal, it is based on the
information of the true values of the underlying state variables ®, (which only God sees). Thus,
x} has no clear economic interpretation at any individual level, since it is not measurable to any
investor’s information set F;. Furthermore, such a decomposition relies crucially on the fact that
noninformational trading is exogenous. If the noninformational trading is endogenous, it will be
intimately related to the informational trading. There would be no simple dichotomy between the
two as we have here. See Wang (1994) for a discussion of this issue in a different setting.
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Thus, x/ depends only on investor #’s private information. Given an
investor’s private information, ﬁl—, measures the amplitude of his in-
formational trading. As the state of the economy changes, investors
trade to revise both their speculative and their market-making po-
sitions. The volume generated by investor #’s informational trading,
given by |x/ — x/_,|, not only depends on the new private information
he receives, but also on changes in i = pn../pe.;, the amplitude of

his informational trading.

3.2.3 Equilibrium volume oftrade. Given investors’ optimal stock
holdings, the equilibrium volume of trade at date ¢ is?

T T
v,E§/|X,'—X;_1|+§|®,—®,_1I t=1,...,T—1. (28
i

Subtracting the volume under homogeneous information V} from the
total volume, we have

V=V, -V (29)

We will use V; as the measure of volume for our analysis. It is clear
that V; is the volume generated by heterogeneous information in the
current model. We can interpret V; as the volume of informational
trading. From the definition of x; we have

1 . 1
vi=; [ |86, + axi] - 51804,
2/, 2

and from Equation (27), A®, and Axf are uncorrelated, so
1
V21

The expected volume of informational trading will be the focus of
our analysis. We present in the next section numerical results which
illustrate the behavior of volume. Note that V; = 0 when V i, Ax; = 0.

7, = ElV}) = (\/Var[A@),] ¥ VarlAx]] — \/Var[A®,]) . (30)

3.3 The special case with o5 =0

In general, it is difficult to study the equilibrium prices and volume
analytically. However, when o5 = 0, we can explicitly characterize
the equilibrium, and the behavior of prices and volume is greatly
simplified. This is the situation considered in many existing models,
since it has a simple solution [e.g., Brown and Jennings (1989) and
Kim and Verrecchia (1991a,b)].

See Pfleiderer (1984) for a discussion on trading volume when there are supply shocks and a
countable number of traders.
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When o3 = 0, there will be no residual risk in the underlying value
of the stock. If the number of trading dates is large, the true value of
the stock will be almost fully revealed by the last trading date 7' — 1
G.e., of_; = 0if T '— 00). More importantly, with o5 = 0 we can find
the equ1hbr1um in closed form. We present the results as a corollary
of our main theorem in Section 2, the proof of which can be found
in Appendix E.

Corollary 2. Suppose thatos = 0. Then, (1)

we=220 _ay, X! =8+ LA
N AO;

Jort =1,..., T — 1. In particular, if 6§, = 62 (constant over time),

then p, = '\%; and (2) the expected equilibrium volume of informa-
tional trading is

- 1 1
V; = E (\/Var[A@,] + m — \/Var[AG),])

where Var[A®,] =

1+ﬂ®

Note that from the price, investors can infer IT — u,0,, which serves
as a signal for the unknown value of the stock, I1. According to this
corollary, the noise-signal ratio u, decreases over time when there
is new private information every period. Thus, the current price be-
comes more and more informative about the true value of the stock.

Corollary 2 implies that informational trading occurs only when in-
vestors receive new private information. V; is nonzero only if ¢, is
finite. Suppose that at date ¢, there are no private signals received by
the investors. Then, o, = 0o and V; = 0. One may want to com-
pare this equilibrium with the no-trading equilibrium of Grundy and
McNichols (1989). The difference here is that even though there is
no trading (other than the noninformational part), prices still reveal
new information (when ag # 1). The situation here reduces to the
Grundy-McNichols no-trade equilibrium only when ag = 1 and in-
vestors receive private information only in the first period.

The above result extends the result of Pfleiderer (1984) obtained in
a static setting to a multiperiod setting. Even though there are many
rounds of trading and investors maximize lifetime utility in the current
setting, the static nature of investors’ trading strategies in this special
case o5 = 0] gives rise to this result.?!

?! Suppose that one solves a one-period equilibrium at ¢, assuming that investor i has information
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Volume, Price Volatility, and Information

We now examine in more detail the behavior of trading volume and
its relation to price volatility under different specifications of the infor-
mation flow in the market. Since the case where o5 = 0 was solved in
closed form in the previous section, we focus mainly on the general
case where o5 # 0, that is, the case when all the combined private
information in the market does not fully reveal the true value of the
stock. In this case, we do not have closed-form solutions to the coef-
ficients of the price function, and we resort to numerical methods.

Although our general model allows investors to receive new pri-
vate information every period, we focus on the simple case where
investors receive their private information only at the first date Gi.e.,
051 <ooandog; =o00forl < ¢t < T—1). In addition to private infor-
mation, investors may receive public information (other than prices)
at given dates. The analysis of this case provides the basic intuition
about the behavior of trading volume and its relation to price changes
under differential information. We present various patterns of volume
and price volatility for this case. While specific patterns of volume
and price volatility may vary with the parameter values chosen, the
qualitative features of those patterns are robust.

When investors receive their private information at date ¢ = 1, they
establish speculative positions. The volume generated by the private
information at date ¢ = 1, however, depends on the investors’ initial
stock positions. Since our main concern is the volume in subsequent
periods, we will exclude the volume at t+ = 1 from our future dis-
cussions, thus avoiding making specific assumptions about investors’
initial positions.

Our main findings are as follows: Even when there is no new infor-
mation, private or public, after the first date, trading persists through-
out the whole trading horizon. Investors establish their speculative
positions when they first receive their private information, and then
gradually unwind their positions. The unwinding of their positions
can generate a nonmonotonic volume pattern over time, which peaks
in the middle of the trading horizon. When there are public announce-
ments, investors increase their positions right before the announce-
ment to speculate on the outcome of the announcement, and close
their positions after the announcement. This generates high volume

F!, and the risky asset will be liquidated at ¢t + 1. Then, pn, = 1 — @, po, = Ao, and the
optimal stock holding of investor i is X/ = 6; + ;—",Aj. It is easy to verify that the coefficients of
the equilibrium price in this repeated one-period equilibrium satisfy u, = Awy, as in Corollary 2.
Moreover, since :{—f[ = ﬁ the optimal stock holding of investor i in the repeated one-period
model is exactly the same as that in the multiperiod model.
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around the announcement date. The volume pattern over time, the
amount of volume generated, and the total amount of information re-
vealed through trading all depend on the timing of the announcement.
Market liquidity drops right before the announcement and bounces
back afterward. We also find that new information, private or pub-
lic, generates both high volume and large price changes, while ex-
isting private information can generate high volume with little price
changes.

4.1 Volume and private information

Let us first examine the dynamic behavior of expected trading volume
when there are no public announcements before the terminal date. In
this case, all the trading volume is generated by the private information
received at ¢t = 1.

When o5 = 0, the volume of informational trading will be zero af-
ter the first date, as pointed out in the previous section. In particular,
investors establish speculative positions at the first date based on their
private information. At the following dates, they trade only to accom-
modate the supply shocks while maintaining their original speculative
positions.?? This result might be surprising, since as time passes, more
private information is revealed through investors’ noninformational
trading. This is illustrated in Corollary 1. The informativeness of the
equilibrium price sequence increases over time even though there is
no exogenous information coming to the market. This implies that
the expected gains from speculation based on private information de-
crease over time. However, investors do not reduce their speculative
positions. This is because as more information is impounded into the
price, there is less risk associated with speculation and investors are
willing to take larger positions. If we look at how #,, as a measure of
the intensity of investors’ speculative trading, changes over time, we
notice that b, increases monotonically over time when o5 = 0.

When o5 # 0, volume does not drop to zero after the first period. As
a matter of fact, volume can be nonmonotonic over time, first increas-
ing and then decreasing. In general, the expected trading volume at
each date depends on all the private information received up to and
including that date. Thus, the behavior of trading volume becomes
much more complex than in the case where o5 = 0.

This is best seen by looking at investors’ positions in the stock. Given that w, = w, for t =
1,..., T —1, then u, = Aw, = u, and from Equation (27)

1 = 1
X = — (M - = — (8! = 1),
My H

which is constant for ¢ > 1. Thus, the volume of informational trading is zero after the first period.
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In the case where investors receive private information only on
the first date, trading continues on the following dates. From Equa-
tion (27), we have

. 1 ~,; 1 .
xf = —' - 1) = —(si - ).
1273 273

The volume of informational trade simply depends on Var{Ax/] =
0§1(5- — =) which is completely determined by the dynamics of
u; [see Equation (30)]. In Figure 1, we show the pattern of expected
trading volume for some parameter values. Here, we have chosen
T = 50 to be the total number of trading dates. The volume at the
first date is omitted in the figure for reasons mentioned earlier, and so
is the volume at the terminal date, which is trivial. We see that volume
exhibits a peak in the middle of the trading horizon. Also note that
volume jumps right before the terminal date. In general, details of
the volume pattern depend on the parameter values. When o3 is very
large, volume may decrease monotonically over time. When o5 is very
small, volume may remain small until the last few trading dates and
then increase. The pattern of volume over time also depends on the
values of other parameters (A, ag, 0g, etc.), but the qualitative features
as presented in Figure 1 are robust.

In order to understand the time pattern of trading volume, let us
examine investors’ trading strategies. Two factors are at play here.
On the one hand, investors’ information about the value of the stock
becomes more accurate towards the terminal date; hence they trade
more aggressively. Thus they maintain a large speculative position,
even though the difference among them diminishes as more informa-
tion is impounded into the price. This phenomenon is best seen in
the case with o5 = 0 as discussed earlier, where b, increases mono-
tonically over time. On the other hand, trading opportunities diminish
closer to the terminal date. Investors become less willing to keep large
positions, since it becomes more difficult to unload these positions.
The residual risk 8 plays a crucial role here. Since no investor has
any information about 8, an investor will bear this risk if he holds
his position until the terminal date. In order to avoid this undesirable
situation, it is optimal for investors to have relatively small speculative
positions before the terminal date. In a dynamic setting with this ex-
pectation for his position at 7'— 1, an investor will unwind his position
before the terminal date, which generates trading along the way.

In Figure 2, we plot b, against time. We show (for some parameter
values) that b, increases in the few periods after the first date, and then
decreases, reflecting the trade-off between these two factors. When o
is large (with respect to the remaining uncertainty in IT at 7—1, which
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Figure 1

Expected volume of informational trading when there is no public announcement

This figure plots the expected volume of informational trading V, over time in the absence of
public announcements. The parameters are set at the following values: T = 50, A = 2.0, ag = 0.85,
02 =03502=010% =20,02,=10°0<t<T-1),0%,=10°QA<tr<T-1).

can be measured by of._,), the effect of the residual risk dominates,
and b, simply decreases monotonically over time. On the other hand,
when o; is small, b, may keep increasing until a few periods before
the terminal date, and then decrease, reflecting investors’ aggressive
speculation during most of the trading horizon. b, always drops at
T — 1, right before the terminal date. This results in the high volume
at date T — 1. In the limit when o5 = 0, we reduce to the case where
b, monotonically increases in time (even at 7 — 1), I_x,’T stays constant,
and there is no volume after t = 1. For comparison, we have also
plotted b, when o5 = 0 in Figure 2.

Although b; measures the intensity at which investors speculate
on their private information, their actual positions also depend on
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Figure 2

Intensity of investors’ speculative trading when there is no public announcement

This figure plots the intensity of investors’ speculative trading b, over time in the absence of public
announcements. The parameters are set at the following values: T = 50, A = 2.0, gg = 0.85,
02=03502=01,02,=20,0%,=10° (1<t<T-1),0;,=1001<t<T-1).

their anticipated gains as well as their expectations about the supply
shock. Figure 3 shows the investors’ mean absolute position (net of
the supply shock):

—_—

. 2 .
[ = E[lx/]] = || =Var [],

where Var{x/] = 02, /u?. For most parameter values, investors’ mean
absolute positions due to their informational trading are highest at the
beginning of the trading horizon when they first receive their private
information, and then decrease gradually. For some parameter values,
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Figure 3

Expected position of investors (net of supply shock) when there is no public
announcement .

This figure plots investors’ expected stock position (net of supply shock) |x/| over time. The
parameters are set at the following values: T = 50, A = 2.0, deo = 0.85, 6} = 0.35, 63 = 0.1,
02, =20,0, =100 <t<T-1),062,=10°A<t<T-1).

especially when o5 is small with respect to the remaining uncertainty
in IT at 7 — 1, and investors’ private signals have very low signal to
noise ratio, both A, and |x]| can increase over time until the last few
periods. This situation arises when the first factor dominates.

It is clear that trading occurs when investors’ positions change.
The highest volume (after the initial date) occurs in the middle of the
horizon, when investors greatly reduce their positions associated with
informational trading. The position of the peak in volume depends
on the residual risk o5. The peak occurs earlier as the residual risk
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increases. When o5 = 0, Figure 3 shows that |x/| = 0.25 is constant
over time, as pointed out earlier.??

4.2 Volume and public information

An abnormally high level of trading has been documented around
public announcements such as earnings announcements, [see, e.g.,
Bamber (1986) and Beaver (1968)]. Several authors have considered
the link between abnormal trading in response to public announce-
ments and information heterogeneity among investors.?* For example,
Kim and Verrecchia (1991a) have shown in a three-date setting, ab-
normal trading occurs only if there is some type of asymmetry among
investors, either in their risk aversion or private information. In their
model, public information does not generate trading volume when
there is perfect symmetry among investors.

Our model generalizes the model of Kim and Verrecchia (1991a)
to a general dynamic setting. The case with o5 = 0 is a direct ex-
tension of their model. With perfect symmetry among the investors
in terms of their risk aversion and signal quality, public news does
not generate any abnormal trading. As pointed out earlier, the volume
of informational trading is completely determined by the new private
information.

In the case where o5 # 0, however, exogenous public information
does generate trading. Figure 4 shows the pattern of volume when
there is a public announcement. We have chosen 7' = 50 as in the pre-
vious figures, and the announcement date ¢4 to be 8 or 30. We want to
compare this volume pattern with the volume pattern in the absence
of the public announcement, illustrated in Figure 1 (for the same pa-
rameter values). Without the announcement, the volume exhibits a
peak at t = 25 due to the endogenous informational trading among
the investors. With the announcement, high volume is observed on
the announcement date. For #4 = 8, the announcement date comes
before the peak of endogenous informational trading. The abnormal
volume due to the announcement does not greatly affect the endoge-
nous informational trading. Thus, a smooth peak occurs at ¢t = 25
due to endogenous informational trading and a sharp peak right on

Various volume patterns can be found in the strategic trading models by Foster and Viswanathan
(1993a), Holden and Subrahmanyam (1992), and Vayanos (1992). However, differential informa-
tion is not a major issue in these models, although Vayanos’s model has some flavor of differential
information, since the investors’ initial endowment is not known to each other. A more recent
paper by Foster and Viswanathan (1993b) considers the situation of differential information in a
strategic setting.

Grundy and McNichols (1989), Kim and Verrecchia (1991a,b), and Wang (1994) analyze the link
between volume on announcement days and heterogeneous information. See also Stickel and
Verrecchia (1993).
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the announcement date, t = 8. For t4 = 30, the announcement date
is close to the peak of endogenous informational trading. The an-
nouncement not only generates high volume on the announcement
date, but also affects the pattern of endogenous trading. As a matter
of fact, in this case, most of the trading is clustered around the an-
nouncement. Furthermore, the volume also depends on the timing of
the announcement. For example, the volume on the announcement
date is about 150 times larger when #4 = 30 than when ¢4 = 8. Even if
we add up the volume over the whole trading horizon, it is still much
higher when t4 = 30 than when #4 = 8. Thus, the volume pattern
heavily depends on the timing of the announcement.

The expected announcement can induce investors to time their
trade around the announcement date. Let us consider the intensity of
investors’ speculative trading as measured by A,. As Figure 5 shows,
h; jumps right before the announcement date and then declines. It
is interesting to note that when the announcement is at ¢4 = 8, b,
jumps at ¢ = 8. Investors speculate a lot more aggressively after the
announcement, since the risk of speculation is greatly reduced. When
t4 = 30, however, b; drops drastically after the announcement, since
it is too close to the terminal date and investors do not want to carry a
large speculative position. We can further examine the investors’ mean
absolute positions of informational trading, which are characterized
by |xf]. Figure 6 shows that in both cases (4 = 8 or 30), investors take
aggressive positions before the announcement date and cut back their
positions after the announcement. This pattern in their position taking
clearly reflects the betting on the outcome of the announcement by
the investors. When the announcement is early during the trading
horizon (¢4 = 8), investors carry large speculative positions already
and the additional position taken before the announcement is small
compared with the established positions. When the announcement
is late (z4 = 30), investors have already reduced their speculative
positions. The additional position taken before the announcement is
very large compared with the established positions.?

It is interesting to note the difference in investors’ behavior before
the announcement date and before the terminal date. At both dates,
part of the uncertainty about IT is resolved. As we have noted, in-

In a partial equilibrium model with no differential information, we may expect investors to trade
less aggressively prior to the announcement date (due to their aversion towards risk). Here,
we are in a general equilibrium model with differential information. Investors may speculate
more aggressively on the outcome of the announcement despite the risk involved. Note that in
the current setting investors in general do not have concordant expectations and the No-Trade
Theorem [see, e.g., Milgrom and Stokey (1982)] does not apply. In equilibrium, investors do have
different expectations and interpretations about public information, and they trade on it. Grundy
and McNichols (1989) give a detailed discussion on this issue in a simpler setting.
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Figure 4

Expected volume of informational trading when there is a public announcement

This figure plots the expected volume of informational trading V; over time when there is a public
announcement. The parameters are set at the following values: T = 50, A = 2.0, ag = 0.85,
0% = 035,02 = 0.1, 07 = 025,02, = 20,02, =10° (1 <t < T—-1), 07, =600y, = 10°
(t # t4). The announcement dates are, respectively, t, = 8 and #, = 30.

vestors make aggressive bets before the announcement, but reduce
speculative positions before the terminal date. The reason behind this
difference is that at the terminal date, not only the true value of IT will
be revealed, but also the value of §. Investors have no information
about 8. If they want to bet on the outcome of the final revelation
about I, they will have to bear the risk of §. When o5 is large (with
respect to the remaining uncertainty in ID), the risk dominates the
potential gains from speculation. Thus, investors cut back their spec-
ulative positions just before the terminal date. For the announcement
before the terminal date, however, there is no extra risk involved in
taking speculative positions. The only uncertainty is about the value of
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Figure 5

Intensity of investors speculative trading when there is a public announcement

This figure plots the intensity of investors speculative trading b, over time when there is a public
announcement. The parameters are set at the following values: T = 50, A = 2.0, g = 0.85,
o =0.35, 63 =0.1, 0} = 0.25, 02,=20,02, =10°(1 <t <T-1), af.‘,A =6.0, 0}, =10°
(¢ # t4). The announcement dates are, respectively, ¢, = 8 and t, = 30.

[1, which is exactly what investors want to bet on, given their private
information. Thus, they increase their speculative positions just before
the announcement. In the limiting case where o5 — 0, we obtain the
result that investors hold their positions to the terminal date.

We can also examine the change in liquidity around public an-
nouncements. Figure 7 shows that pg ; increases right before the an-
nouncement, indicating decreased liquidity. The liquidity decreases
before the announcement due to the intensive informational trading,
and increases after the announcement due to the reduction in uncer-
tainty by the public revelation. The decrease in liquidity prior to the
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Figure 6

Expected position of investors (net of supply shock) when there is a public
announcement _

This figure plots investors’ expected stock position (net of supply shock) |x/| over time when
there is a public announcement. The parameters are set at the following values: T' = 50, A = 2.0,
de = 0.85, 0% = 035,02 =0.1,02 =025, 0%, =20,0,=10° 1 <t < T = 1), 0}, =60,
aﬁ‘ = 10° (¢ # t,). The announcement dates are, respectively, t, = 8 and #, = 30.

announcement will cause the price to be more sensitive to supply
shocks, thus increase price volatility. In Figure 8, we also show the
time path of pr ;.

Another interesting point to notice is that the total amount of infor-
mation revealed through the prices depends on the timing of the pub-
lic announcement. Figure 9 plots of over time when the announce-
ment is at ¢4 = 8 and 30, respectively. Note that of measures the
remaining uncertainty in I, given the history of prices and public an-
nouncements. Clearly, more private information is revealed through
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Figure 7

Coefficient of the price function p,, , when there is a public announcement

This figure plots the time path of pe ., the coefficient of total stock supply ©, in the price function,
when there is a public announcement. The parameters are set at the following values: 7' = 50,
A =20, do = 0.85 0f = 035,02 =0.1,0} =025 0%, =20,0f, =10°(1 <t <T-1),

f,“ =600}, = 10° (¢ # t4). The announcement dates are, respectively, ¢4 = 8 and £, = 30.

g

the prices when 4 = 30 than when #4 = 8. This is not surprising,
given the investors’ trading behavior in these two cases, as shown in
Figure 5. When #4 = 30, investors bet more aggressively on the out-
come of the announcement and more private information is revealed
through the prices.

4.3 Volume and price volatility
Since volume is closely related to the flow of information to the econ-
omy, several authors have suggested that volume can be used to gauge
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Figure 8

Coefficient of the price function p;; , when there is a public announcement

This figure plots the time path of pn ;, the coefficient of underlying stock value IT in the price
function, when there is a public announcement. The parameters are set at the following values:
T=50,A=20,d0=085,0% =0.35062 =01,02 =0.25,02, = 20,02, =101 < t < T-1),
of,',A = 6.0, af,‘, = 10° (¢ # t,). The announcement dates are, respectively, ¢4 =8 and #4 = 30.

the information flow to the economy [see, e.g., Clark (1973), and Lam-
oureux and Lastrapes (1990, 1992)]. It is argued that periods of high
trading volume should be the periods with clustering in new informa-
tion. These should also be the periods with persisting high volatility in
prices. Thus, volume provides a measure of the economic time with
respect to which the information flow is uncorrelated.

This argument can be justified when there is no private information.
When there is private information in the market, the information flow
can be exogenous or endogenous. Different information flows give
rise to different behaviors of volume and price. We now use our model
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Figure 9

Remaining uncertainty in the underlying value of the stock IT when there is a public
announcement

This figure plots of, the remaining uncertainty in the underlying value of the stock conditional on
investors’ information, over time when there is a public announcement. The parameters are set
at the following values: T = 50, A = 2.0, ag = 0.85, 62 = 0.35, 6§ = 0.1, 0} =025, 0, =20,

62, =10°0 <t <T-1, J)Z,',A = 6.0, 02, = 10° (¢ # t,). The announcement dates are,

respectively, ¢, = 8 and t4 = 30.

to examine the relation between volume and price volatility under
different types of information flow.

In the current model, exogenous information includes public an-
nouncements and new private signals about the value of the stock;
endogenous information is the stock price that reveals the existing pri-
vate information. As discussed in the previous subsections, new public
information mainly generates trading in the current period. New pri-
vate information not only generates trading in the current period, but
also generates trading in future periods. This implies that when there
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is private information, independent arrival of new information can
generate serially correlated volume.

The price changes whenever there is new information. Two things
contribute to such price changes: changes in investors’ expectations
about the value of the stock, which changes IT{ and changes in the
uncertainty in the stock, which changes the price function, namely,
the values of pp; and pe ;. For example, pe , increases right before
the announcement and decreases after the announcement, as shown
in Figure 7. Figure 10 shows the pattern of price volatility when there
is a public announcement at z4 = 8 and 30, respectively. Price volatil-
ity jumps up at the announcement date. There is also abnormally high
volume on the announcement date as shown in Figure 4. Similar re-
sults also hold in the case of new private information. Thus exogenous
information generates both high volume and price volatility.

In the case of endogenous information, there can be trading in
the absence of exogenous information. In this case, the high volume
of trade may not be accompanied by large price changes. Consider
the case when #4 = 8. High volume occurs at ¢t = 8 due to the an-
nouncement, and at ¢ = 25 due to the existing private information
(see Figure 4). However, no abnormal price volatility is observed on
the dates of high volume (around ¢ = 25) that is generated by the
existing private information. This contrasts with the volume at ¢t = 8,
which is accompanied by high volatility in prices. The intuition behind
this result is simple. The trading associated with existing information
is mainly generated by the dynamic adjustments of investors’ specu-
lative positions. There are no abrupt changes in investors’ perception
of the stock’s underlying value or the risk associated with trading. As
a result, there are no abrupt price changes accompanying the vol-
ume.

It is also interesting to note that in some cases, high volatility oc-
curs even before the actual announcement. For example, in the case
when #4 = 30, the volatility increases at ¢ = 29 and then further in-
creases at ¢ = 30 when the announcement arrives.?’ The increase in
volatility at ¢+ = 29 is caused by the decrease in liquidity before the
announcement (i.e., an increase in pg ), as shown in Figure 7. Since
the shocks in liquidity traders’ demand are exogenously specified and
independent of endogenous changes in liquidity, the observed price
volatility increases when liquidity decreases. If one allows the supply
shocks to be price sensitive, it is quite possible that the price volatility
may not increase much until the date of the announcement.

It is possible (for some parameter values) that the volatility at the date right before the announce-
ment is even higher than the volatility at the announcement date.
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Figure 10

Volatility of price changes when there is a public announcement

This figure plots the unconditional volatility of price changes Var{P, — P,_;] over time when there
is a public announcement. The parameters are set at the following values: T = 50, A = 2.0,
o = 0.85, 07 = 0.35, 0 = 0.1, 07 =025, 0}, =20,07, =10° (1 <t < T—1), 07, =60,
a,z,v, =10° (¢ # t,). The announcement dates are, respectively, ¢, = 8 and 4 = 30.

Our examples show that when there is private information, trading
is not only related to the new exogenous information, private or pub-
lic, but also related to the existing private information. The trading
generated by exogenous information is accompanied by high price
volatility, while the trading generated by the existing private informa-
tion is not.

In the more general case when there is new private information
after the first period, the pattern of volume becomes more complex.
Every piece of new information generates immediate trading as well
as trading in future dates. The resulting volume and volatility patterns
depend on the specific flow of information and the parameter values.
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Concluding Remarks

In this article, we have considered a multiperiod model of stock trad-
ing in which investors have differential information about the true
value of the stock. We show that the volume pattern over time is
closely related to the flow and the nature of the information (e.g., ex-
ogenous versus endogenous, and private versus public). In our model,
exogenous information includes new private signals and public an-
nouncements; endogenous information is simply the market-clearing
prices that are public. Private information not only generates trad-
ing in the current period, but also leads to possible trading in future
periods; public information mainly generates trading in the current
period. Moreover, volume generated by exogenous information, pri-
vate or public, is always accompanied by large price changes, while
volume generated by existing information is not.

To facilitate our analysis, we have made various assumptions to
make the model tractable. Some of these assumptions can be weak-
ened. For example, it is possible to allow investors to have different
degrees of risk aversion and different levels of precision for the sig-
nals they receive at any one time. (However, we still maintain that
the Law of Large Numbers continues to apply to the partial sums of
investors’ private signals.) The assumption that there are a countably
infinite number of investors is important. Also, for simplicity we have
assumed that investors’ signals are independent. We can extend our
model to the case of a common noise in all investors’ signals [similar
to the assumptions in Grundy and McNichols (1989)]. Most of our re-
sults will remain the same. In fact, the common noise plays the same
role as the residual risk § in the stock’s underlying value.

Concerning the predictions on the behavior of volume, our results
rely on the assumption that noninformational trading in the market
is exogenously specified. If the noninformational trading is generated
by changes in the demands of liquidity traders, it is more plausible to
let the liquidity traders choose the optimal timing for and the amount
of their trades [see, e.g., Admati and Pfleiderer (1988)]. Endogenous
liquidity trading potentially alters the results we have in the current
model. Moreover, given that the noninformational part of the trad-
ing is exogenous, we are able to decompose trading into informa-
tional and noninformational parts. When noninformational trading is
endogenous, such a dichotomy becomes ambiguous, since informa-
tional trading will generally affect the noninformational trading and
vice versa [see, e.g., Wang (1994)]. We leave the discussion of these
issues for future research.
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Appendix

A. Proof of Lemma 2. To derive the filtering Equations (9) and (10),
we use the results in the following lemma, the proof of which can be
found in Liptser and Shiryayev (1974).

Lemma A.1. Let
Xy = ArXe—1 + Br€x 1, Y= Hxy + €y, t=12,....

x; is the n-vector of state variables at t, Y, is the m-vector of observations
at t. A;, By and H, are, respectively, (n x n), (n x k), (m x n) con-
stant matrices. {€x, t =1, ...} and {€y;, t =1, ...} are respectively a
k-vector and an m-vector white Gaussian sequence. €x,; ~ N(0, Qy),
€yt ~ N(O, Ry), and x ~ N (%, Zx0). X, (€x,1} and {€,,;} are inde-
pendent. Let

X = E[x,lytzlstft],
O = E[(xt—g‘?t)(xt_&\t)T|yr'-1§‘f§f]-
Then,

X = Axi—1 + Ky — HiAXi—1)
(I, — KiHy) (A O—14] + B/ QiB/)

Q
Il

K = (401 A] + B.QB] ) H
x [H(4,0 147 + BOBHH +R] ",
where I, is the (n x n) identity matrix.
We can now solve for the common filters, ﬁf and @f, by applying

this lemma. Make the following substitution: x| = (I1, ®,), y =
(Sta le)a ex,t = 6@,t, 6;; = (07 6Y,t)7 and

At= ’
0 ae

B 0

t — 1 ’
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Qt=0,
[$)

2 0 O
"“\o oy, |

Since pr (IT — ﬁf) = po (O, — @t‘), we have

E[(@t - G')f)((")t - @tc) | -7'-,6] = —20,6,
1273
Oe ¢ c 1 c
E[(H - )\, - 6)) | .7-',] = —oj.
My
Also define fi=1— a@ - and
Df = flo},0f 4 + niod (of_, +07,)
1
Y
klEI,t = D /'LtUGDOt 1
1
£
Ielfl,t = Df fUYzOt 1
1
Y
kcf),r = Dcll’fa®ot—1’
1 Ji
kS = I:,ua o +o ag——0c2 0f ]
O,t Dl t @( t—1 Yl) Lie1 Y, tYt—1
According to the above lemma, we obtain
s g,
CH 60,
krcfi klfl)t/ & — (M, — aon©¢_,)
N AD
k(f)st /e(f)“}; Y, — Htc—l
and
1 1 2 1
<= ¢ + §2+T' (A.2)
O; 01 Mi0g Oy,

At time 0, we have % =
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Now, consider ITi and @!. The derivation is similar to that of the
common filters. In applying the above lemma, we make the fol-
lowing substitution: x, = (I1,®,), y!' = (&, v, S, €x: = €o.,
e;, = (0, €y,1, €5 ), and

1 —p
H=|1 o |,
\'1 0

(0 0 0
R=1]0 o O
\0 0 of

We then have

. L1 . 1
E[(®, - 0)’ | F]]= —o0, E[I-T)(©,-0)|F]=—o.

t Mt

— £2,2 o2 2,2 (2 2 2 2
Also define Dy = f?0 0,011 + pjo§ [(0F, 4+ 02,) 01 + 02 ,02,]
and

1
Yy _ 2.2 2
/en’t=3uta®as’t0,_1,
t
kS =_1_ 20,2 2
n:=7 Hi%9y,10-1,
t

& 1 2 2
kl'l,t= Bﬁay,tas,tot—l*
¢

1
Y _ 2 2
kg, = —HWU1050% ,01-1,
Et
1
s _ 2
ke, = 75 11060y, 011,
t

[
kg),t = D {M;O'é [(012’,t+0§,t) Ot—1+°'f’.t052,t]_a@'u

2 2
O'S’to'y’tot_l } .
t t—1
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We have
I m_,
= (A.3)
CH ae®©]_,
/ef_“ klyl,t ]el:V“ & — (H;—l - a®ﬂt®§—1)
+ Y, — H;—l
kfa,t kg,t kg,t St — ni—l
and
1 1 2 1 1
—=—t St 5+ (A.4)
Or 01 M0y Oy, 05,
n

B. Proof of Lemma 3. Let St = (S}, S}, ..., S}) and F§ = F, denote the

prior. Then, FP = }',5’. Applying the results on conditional normal
distributions [see, e.g., Liptser and Shiryayev (1974)], we have

E[M| 7] =TI + T (5 - B[S} | 7)),
where ', = Cov [I1, 8! | F¢]" Cov|[si, Si | F£]". Note that
E[s}| 7] = Tie,
Cov[IL, S} | F{] = Cov[M, I | F{]e,
Cov|[si, st | Ff] = Cov[I, 11| F{|e,e + diag(es,,...,05,)

where ¢, is the (¢ x 1) column vector of 1’s and diag is the diagonal
matrix. Thus,

— ol [ofe o ; 2 AN
't =oje, [o,g,gt + diag(og 4, ...,os,,)] .
. _ of 1 e .
It can be verified that I'; = tw (052'1, e, a) Now, it is easy to

show that

P
. ~ ~ ; -~ . Sl

E[l| F]= a IS+ (1—a)TP’, where M7= w,Z >— (B.1)
=1 GS,T

and €], | F} ~ N(0, Z41). "

C. Proof of Lemma 4. Suppose that W, is a Gaussian process and
P, =L(¥,). Clearly O; =P, — P,; and ¥, =E [lIl, | ]—'t’] are adopted
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to F!. Suppose also that

Qi1 = Ao 1V + Bo,1+1€} 41

"I’zl+1 = A\v,t+1‘1’f + B\v,t+1€f+1 (CD

where Ag 111, Aw,141, Bg,1+1, By,141 are constant matrices of proper
order and €/ w1 | F} ~ N(0, £,41). We want to prove that investor
i’s optimal holding has the linear form. Let us consider investor s
optimization problem:

Maxy: E[—e —AWr | F1 st Wiy =W+ X/ Qi

[see Wang (1994)]. Let J(W;; W/; t) be the value function, the Bellman
equation for the optimlzatlon problem reads

0=Maxy (E[J(W}y; W/ ;t+1) | Fi]—J(W5 vl 0)
st Wiy = W+ X! Qu,
J(Wis W T) = —e W,

We assume that the value function has the form J(W; W/; #)
—e MWI=3¥TUY 1t s straightforward to show that

[f( 1 t+l’t+1)|]:]

= —pr e—)\rﬂ W— ‘I"TAI 1 U1 Aw, e V)
X e A1 X Ag i1 W+ 3 (g Q,“X'+Bq, it Ui A )T ut+1()~r+1BQ ,+1X'+Bq, 41 U1 4w 111

= -1 _ =
where E;;; = (Et+1+B\;,+1 Ui+1By, 1+1) 'and Pr+1 = /Bl /12411
Define

N =
Fr = [Bg 14184183 414] "(Agr1 — BQ,:+1~'1:+1B$,;+1 U14w,141),

M, = F] (Bo.111E41B) ) F;

T T T
= (By 141 Ur+14w,141) ' Er11(By, 141 U1 4w, 141)
+ Ay ;U1 A

W41 Y144, 141 .

It is easy to derive the following first-order condition with respect
to X[!

X/ = EV, (Q<t<T). (C.2)

Arsl

The second-order condition for optimality is Bg ;41 E,HBg 41 > 0.
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Furthermore,

[f( s Y 2+ | -7'-] = —pre W Wima MY (C.3)

Substitute Equations (C.2) and (C.3) into the Bellman equation, we
obtain the following for t < T:

A=k and U =M+ ol (C.4)

where ¢; = —21In p,y; and 14 is a (4 x 4) index matrix which has
all the elements being zero except element {11} being 1. From the
solution for T — 1, ..., t+ 1, we can recursively solve for A; and U,
hence the value function and the optimal investment policy. Hence,
we have completed the proof of Lemma 4.
In a general linear equ111br1um P = L(¥) by Lemma 1 where
=(1,1,0,Y)". ¥/ =E|[¥]=(, M, 8%, Y,). Since Ei[©,,,] =
a@@)’ and E![Y,41] = I'I,, we have E![P,11] = L(¥}). Thus

E[Qi11] = E|[Piy1 — Pl = Ag 111V},

; s AT , -
where W/ = (1,11, 0% Y,) and Ag ;4 is a constant matrix with
proper order. Note that W/, = (1,11,,,0!,,,Y,,;,) and

E [V, ]= (1,18 a0}, ¥, i)’

we can write

[ [+1] A\l»’ t+1 "ij

where Ay ;41 is a constant matrix of proper order. Furthermore, note
that §; € Ff C F;. Thus,

- MIQ; = Hf - .ut@tc =I1— ;0.
Then from Lemma 2, it easy to show that Y,4; — E! [Y,+1], ﬁ} =
Ei[1,,], 6}, — [H;H] and P41 — El[P;1] are all linear in €/, =
(IT — H,, €0.141s €Y, 1415 65 ,+1) Under the normality assumption
about all the underlymg shocks, we have €/, | F} ~ N(0, Z;41)
where ;41 = diag(o,,0,0%,,1,02,,,). Thus, the excess return pro-
cess can be expressed in the form of Equation (C.1). We can then
apply the above result and conclude that X/ is linear in vl
In the case when P, =L(¥,) and ¥, = (1, I1, ©®,, l'IC) the problem
is even simpler since now ¥, is (Gaussian) Markov. It is easy to verify
that we have Equation (C.1) in this case and the above result also
applies. u
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D. Calculating the Equilibrium. We now use the results in Theorem 1
and Lemmas 1 through 4 to solve the coefficients in the equilibrium
price function of Equation (8). Let us first derive the excess return
process. From Lemma 2, we have

ﬁtc+1 = ﬁtc + lelff,};+1 (Yt+1 - E[Yt+1 | }-tc])
kS (€1 — E[E4 | 1)
E[ﬁfﬂ | 7] = ﬁ:c + (lelff,};+l +ft+1/€1€f,st+1) (ﬁ; - ﬁzc)

As shown in Appendix C, ®! — ©¢ = (T} — [1%)/u,. Defining b}, =
(1=pr 0k 141 and by = (1= prce) fuea ki, where fian, k57

and Ielfft 41 are defined in Appendix A, we can then express investor
i’s expectation of the excess share return as

E[Om1 | FI] = en (T = TIS) + €011 0, (D.1)

where en 141 = (Prg+1 — pno) + bl + B, €101 = —(depo.rs1 —
De.1). Define A! = 1'[’ I'IC A’ is the difference between investor i’s
estimate of the stock value and the estimate based solely on market
information. It is easy to show that E[Al; | F{] = (1 — k), —
S ki) AL

Thus, the expected excess stock return for investor 7 is driven by
two state variables, G)’ and Al Furthermore, (G)’ A?) follows a linear
Markov process with respect to F. !, We can then simply let W} =
(1 e, A!) in applying Lemma 4 to solve the equilibrium. In particular,

Y c.§
define 67, = Ry 111 — K11, t+1 = IeI'l,t+1 kei'y1- We have

1 0 0
Avipr=| 0 1- klff,);ﬂ - ft+1/<’-1€f,st+1 0
0 0 ag
By, 141
0 0 0 0
= 8};1 + kl%,t+l + ft+15f+1 _6f+1l‘l't+1 8};1 klgl.t+l ’

) & & Y )
k@),t+1 + R 1 T ft+1k®,t+1 —ko i1 Ry i1 Ko
where Ag 141 = (0, 1,141, €0,141) and By 11 = (fir1Pmee1 + b1y +

bf“, [P@ t+1+ b +l‘}’+“] b}, 0). Following Lemma 4, we obtain
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the excess return process and investors’ optimal stock demand. The
market-clearing conditions then lead to Equation (23) about the unde-
termined coefficients in the price function, pr; and pe ;, which can
then be solved.

E. Proof of Corollary 2. We will only prove u; = Auy, since the rest of
the corollary is straightforward. For ease of exposition, we present our
proof only for the case where T'= 3, ag =0, oy = 00 and o5; = 0.
It then follows that f; = 1. To prove the proposition for ¢t = 2, we

recall from Equation (24) that pg 2, = Aoz and ppo=1—0a; = ocfwz.
2
Since 0 = (& + i)‘l = ofﬂruj}z, we conclude that i, = Aw,. In the
2 2
rest of the proof, we will repeatedly use Corollary 1 as well as the
relationship

1
=—4w! E.1
P ; (E.1)

to simplify terms. This relationship can be derived as follows,

o = E[(I1 - T1H? | 7]

A~

= E[{o (I - TI9) + (1 — ) (1T — [17"))? | 7]
= oE[(IT = TI)? | F]+ (1 — a)?E[(1 - T1PH? | 7]
= a2of + (1 —a)?w,. (E.2)

Substituting Equation (E.2) in the definition of «, yields the claim.
We now prove the proposition for t = 1. Simple (but tedious)
calculations show that

1 0 0
Az = | 0 1—;3‘253 o |,
0o 0 0
0 0 0
By = | #tmz(@2=—0) —g=(e-0) 2
I C R I
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Since X; = ;\( , o" MWL, we get

0
1 1
[]2=02 O_g Oa;1ky

BqT/,z By, = 0;

B\I,z LAy, = o

e
9 OZC Ué“%’ .

Define k = 0, (& + A%02 + % ). The reader can verify that
Os © O

where 3, = diag(o1,0§,02) and N = (-2, A0d, 1). We thus have
S

0
o
0 s 1 1
E,B , lhAy » = —— | o2 0, ————,0}).
2Dy 2 24,2 T 1@ ( oS Uéuz )

Defining b = By ,82B), , and noting that Bg ; = (pn 2+b;)(1, —u2, 0),
we get

(P2 + b2)*udcdor

b= 0(1+4«)
We can now conclude that X/ = d@1@§ + da 1AL, where
do1 = Alb €0,2 = 1bp@,1
1 02(pn2+ b2)(F + A208) (5 — 75)
dag = Ab[m2+ S1+K 2 62]

and en; = pnz2+ b, — pny with b, = (1—pn2)#0 Imposing
conditions on dg 1 and dj ; as in Equation (23), we obtam

be1 = Ab
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of . 0x(Z + M20d) (5 — 522)
b = o +o 2(P1'12+b2) + T ,

where we recall that

0§ _ (Pn2+ b)*uiodon by — Ao
o5+ w ad+K)

The reader can verify that

bnp2=

1402 +550+3)]

P = = (pna+ b)
Og

1+«
L

= o2 (Pl'l 2+ bz)—1—+K—
and

(priz+ bo)udod = (1 + *lf"—s) :
Thus,

et bzzgﬁaéosz el
or (1+55%)

This completes our proof. u
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